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Analytic solution for low-frequency rf sheaths in pulsed discharges
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The equations governing the evolution of rf-driven sheaths are solved analytically in the regime where the
rf frequency is small compared to both the ionic plasma frequency and the ion transit time in the sheaths.
Poincare´’s map of first return is used to gain geometric insight into the dynamics of the circuit-sheath system.
The requirements of minimizing wall bombardment while maximizing the efficiency of the coupling to the
substrate sheath are shown to lead to an optimum value for the blocking capacitance in asymmetric discharges.
This optimum value is also favorable for rapid relaxation to the steady state in pulsed discharges. The analytic
solution is applied to the problem of negative-ion extraction in afterglow plasmas.
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I. INTRODUCTION

Radio-frequency-driven plasma sheaths are widely u
to produce anisotropic fluxes of energetic ions for a vari
of applications@1#. In recent years, efforts to improve th
efficacy of the related plasma processes have shown that
eral advantages accrue from pulsing the heating power u
to sustain the discharge. In particular, pulsed~square-wave
modulated! power has been shown to reduce dust produc
during etching@2#, to allow control~through variation of the
duty cycle! of the radical composition and thus of etch s
lectivity @3#, and to enable increased plasma densities at c
stant heating power@4,5#. Pulsed or modulated power ha
also been used as a diagnostic method to infer reaction
netics from observations of density decay rates@2,6,7#, and
to allow measurements of the electric charge of particula
@8#. Most importantly perhaps, pulsed-power discharges h
been shown to produce, during the afterglow phases, plas
with extremely high electronegativities approximating pu
ion-ion plasmas. In such plasmas rf biasing leads to the
traction of equal negative and positive ion charges. T
avoids the differential charging of the surface of the subst
with respect to the bottom of the trenches and conseque
improves etch anisotropy@9–13#.

The use of pulsed power raises more questions, howe
concerning the relaxation of the rf-driven sheath oscillatio
External circuit elements are known to play an important r
in determining sheath dynamics@14,15#, but the mechanics
of this role is complicated by the nonlinear nature of t
sheaths. Numerical simulations have proven useful for inv
tigating sheath dynamics, but the disparity in time and spa
scales between core transport phenomena and the rf
quency requires the use of separate codes for the sheath
the plasma core@11,16#. Even with this separation, simula
tions remain onerous. The aim of the present paper is
construct an analytic solution of the equations for the she
substrate bias circuit. In addition to providing a highly fle
ible method for solving sheath dynamics problems in pul
discharges, the analytic solution yields insight into t
mechanisms governing sheath motion, the role of the ex
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nal circuit elements, and the relaxation behavior of sheath
pulsed plasma.

Previous investigations of sheath dynamics@17–24# have
identified two separate regimes distinguished by the rela
magnitudes of the frequency of the applied rf signal and
ion plasma frequency~or equivalently@17#, the inverse of the
transit time for ions crossing the sheath!. In the high-
frequency regime@18#, the ion properties remain constant
time throughout the sheath, and the current is dominated
the displacement current associated with the tidal motion
the electrons in the ion ‘‘beach.’’ The high-frequency regim
is thus unsuited to negative-ion energization. In the lo
frequency regime@19–21,25–27#, by contrast, the instanta
neous electron and ion profiles are the same as those in
sheath and they evolve adiabatically with the changing b
voltage. For sufficiently high electronegativities it is thu
possible to alternate the sign of the sheath bias and suc
sively accelerate negative and positive ions towards the s
strate.

In this paper we restrict our consideration to the lo
frequency regime. We begin in Sec. II by describing t
double-probe model for electron-ion sheaths and derivin
reduced version of this model valid for low frequencies. T
reduced model describes the discharge in terms of a si
first-order ordinary differential equation. Our analysis e
tends previous treatments for large@19,20,25–27# and small
@17# values of the blocking capacitance, and provides
method for studying relaxation in pulsed discharges. We n
that negative ions are confined to the plasma core by am
polar and sheath potentials even for moderately high e
tronegativities. The electron-ion double-probe model th
applies whenever the electronegativity is insufficient to ca
sheath inversion. In Sec. III we solve our model equat
analytically under the assumption that the applied potentia
much greater than the electron temperature. This assump
is well satisfied in practice. This leads us to introduce
phase-return map, describing the times at which the gro
and chuck~powered electrode! sheaths terminate their suc
cessive saturation periods. We use this map in Sec. IV
investigate the steady-state properties as well as the ra
relaxation to steady state in pulsed discharges. In Sec. V
extend the double-probe model to highly electronegative
ion-ion plasmas by using results from the theory of ele
©2002 The American Physical Society07-1
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tronegative sheaths@28–31#. We derive conditions for sheat
inversion and discuss the sheath dynamics and the role o
blocking capacitance. We conclude in Sec. VI by summa
ing and discussing our results.

II. REDUCED DOUBLE-PROBE MODEL

Double-probe models were introduced by Pointu@19,20#
and Metze, Ernie, and Oskam~MEO! @21# to replace phe-
nomenological models of capacitively driven rf sheaths
models based on the known physical properties of plas
sheaths. The central assumption of the double-probe mo
is that the drive frequency is sufficiently small, so that t
instantaneous properties of the sheath are approximately
same as in a stationary or dc sheath. The MEO mode
more general than that of Pointu, in that it considers a fin
blocking capacitanceCB and allows a consideration of ape
riodic or transient conditions.

The equations of the MEO model follow from a straigh
forward application of Kirchoff’s law to the circuit describe
in Fig. 1. They are

vC2

d

dt
~Vp2VT!1vCB

d

dt
~Vrf2VT!1I 250, ~1a!

vC1

d

dt
Vp1vC2

d

dt
~Vp2VT!1I 11I 250. ~1b!

HereVp is the plasma potential andVT is the potential on the
target~powered! electrode. The timet has been normalized
to the inverse of the angular frequencyv. The subscripts1
and 2 denote quantities describing the grounded and
target sheath, respectively. This notation is motivated by
that in asymmetric discharges the target electrode plays
role of the cathode during most of the rf period. TheI s ,
wheres56, represent the conduction currents in the she
They are given by

I s5I is~12ews2w f !, ~2!

wherews5eVs /kTe are the normalized electrode potentia
with respect to the plasma,w f51/2ln(2pme/mi) is the float-
ing potential,I is5AsensuB are the ion saturation current
uB5AkTe /mi is the Bohm velocity, andns are the densities
at the entrance of the sheaths. Finally, theCs(Vs) describe
the sheath capacitances. We note that Sobolewski has
onstrated a noninvasive method for measuring the ion
rent @32#.

FIG. 1. Equivalent circuit diagram for the MEO model@21#.
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The determination of the sheath capacitances in dou
probe models has received considerable attention in the
erature. Metzeet al. @21# and Vallinga and de Hoog@25#
calculated these capacitances assuming that the ion curre
the substrate is constant. This assumption had been q
tioned earlier by Smy and co-workers@33,34#, who pointed
out that the ion continuity equation implies variations in t
ion conduction current at the electrode. Smy and co-work
were unable to identify this effect experimentally, but mo
recent investigations have succeeded in demonstrating
effect both through numerical simulations@35# and experi-
mental measurements@24,36#. Sobolewski, in particular, has
proposed an improved model of the sheath capacitance
takes into account changes in the ion conduction current,
has shown that this model yields a better agreement w
experiment than the static-sheath capacitances@24#.

In the present paper we will neglect the sheath cap
tance entirely. This is consistent with the low-frequency
sumption, and is a good approximation whenever the she
capacitances are smaller than the blocking capacitance.
is generally the case. With the neglect of the capacitan
the circuit equations become

vCB

d

dt
~Vrf2VT!1I 250, ~3a!

I 11I 250. ~3b!

Introducing the ratioa of the ion saturation currents at th
electrodes,a5I i 2 /I i 1 , the second circuit equation takes th
form

12e2w f2wp52a~12ewT2wp2w f !,

where wp5eVp /Te and wT5eVT /Te . We may solve this
equation for the plasma potential in terms of the potentia
the powered electrode,

wp~wT!52w f1 lnS 11aewT

11a D . ~4!

Substituting this result into Eq.~2! for the current in the
powered electrode yields

I 2~wT!5I i 2

12ewT

11aewT
. ~5!

The above solution is illustrated in Fig. 2. We will see tha
graphical analysis is particularly helpful for determining t
conditions for sheath inversion.

We may now substitute the target current found in Eq.~5!
into the first circuit equation~3a! to obtain a single, first-
order differential equation describing the evolution of t
target potential in terms of the applied bias:

dwT

dt
5

dw rf

dt
2FB2

12ewT

11aewT
, ~6!

where
7-2
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FBs5
seIis

kTevCB
~7!

is the potential that would build across the blocking capa
tance if it were charged with the Bohm current of thes
electrode during 1 rad or a 1/2p fraction of an oscillation
cycle. Note thatFB2,0,FB1 .

Equation ~6! is the central governing equation for low
frequency capacitively driven sheaths and is the princ
subject of attention in the remainder of this paper. We e
phasize that no accuracy has been lost in going from
original equations~1a! and ~1b! of the MEO model@21# to
our Eq.~6!, since the original equations did not account f
all the first-order effects in the small parameterv rf /vpi . A
comparison of the solution of Eq.~6! with the solution of the
original MEO equation, shown in Fig. 3, nevertheless give
qualitative idea of the effects of the displacement curre
The parameters are

M540 amu ~argon!, CB50.5 mF,

n051010 cm23, v rf52p3100 kHz,

Te523 200 K, Vrf5300 sin~vt ! V, ~8!

a51, A25100p cm2.

FIG. 2. Determination of the plasma potential and current i
double-sheath system with asymmetry factora50.2. The two con-
tinuous lines represent the current-voltage characteristics for
two electrodes, and the horizontal dashed line represents the t
current.

FIG. 3. Comparison of the solution of the MEO equations~1a!
and ~1b! for the target potential (VT , solid line! and current (I T ,
dotted line! with the solution of Eq.~6! for the target potential
~dashed line! and current~dash-dotted line!. The parameters are
given in Eq.~8!.
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For these parametersv rf /vpi53%. We have used a sma
blocking capacitance to accentuate the effects of the
placement current: thus, the floating sheath capacitance
order of magnitude larger than the blocking capacitance
small sheath biasV;kTe /e, but becomes comparativel
small for sheath biases comparable to the rf bias.

We conclude this section by showing how Pointu’s resu
@19,20# follow from Eq. ~6! in the limit CB→`, or equiva-
lently FB2→0. We expand the solution in powers ofFB2 as
wT(t)5wT

(0)(t)1FB2wT
(1)(t)1•••. To lowest order, Eq.~6!

reduces to

ẇT
(0)~ t !5ẇ rf~ t !,

where the dot indicates derivation with respect tot. Integra-
tion yields

wT
(0)~ t !5w rf~ t !1F` . ~9!

The constant of integrationF` in Eq. ~9! is a self-bias po-
tential that is produced so as to equalize the total cha
variation in each sheath during an oscillation period. T
subscript` indicates the fact that this integration consta
applies to the fully relaxed, steady-state solution.F` can be
evaluated from the first-order equation

ẇT
(1)~ t !5

12ewT
(0)(t)

11aewT
(0)(t)

.

In order for this equation to have a periodic solution, t
right-hand side must satisfy the solubility condition

R dt
12ewrf(t)1F`

11aewrf(t)1F`
50. ~10!

This equation expresses conservation of charge, and is
equation used by Pointu in his analysis. It specifies implic
the self-bias potentialF` in terms of the amplitude of the r
drive and the asymmetrya. We will consider its solution for
large w rf along with the more general solutions for puls
conditions in the following section.

III. ANALYTIC SOLUTION FOR LARGE BIAS
POTENTIAL

A. Saturated and unsaturated regimes

In practical applications, the bias potential is invariab
much greater than the electron temperature:euVrfu@kTe or
uw rfu@1. We may use this fact to obtain an analytic solutio
Inspection of Eq.~6! leads to the conclusion that two regime
may occur for largew rf , corresponding to unsaturated an
saturated sheaths.

In the first, unsaturated regime, the potential drop acr
both sheaths is negligible compared to that across the bl
ing capacitance anduẇTu!uẇ rfu in Eq. ~6!. We may then
solve for the target potential algebraically,

a

he
get
7-3
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F. L. WAELBROECK PHYSICAL REVIEW E 65 066407
wT~ t !5 lnS 1

a

ẇ rf~ t !2FB2

FB12ẇ rf~ t !
D . ~11!

In this regime an electron conduction current flows throu
each of the sheaths. The solution given by Eq.~11! clearly
requires that

FB2,ẇ rf~ t !,FB1 . ~12!

In the case where the above condition holds for allt, Eq.~11!
remains valid during the entire cycle. The sheath potent
never exceed a few volts, so that negligible ion accelera
occurs. This case is clearly of little practical interest.

For larger values of the blocking capacitance~smaller val-
ues of uFBsu), we see that the solution given by Eq.~11!
becomes singular when

ẇ rf~ t !5FBs . ~13!

Since w rf is periodic, the above equation has two roo
~modulo 2p) for eachs56: we denote these roots byts,s
and t t,s , wherets,s,t t,s . At the smallest~earliest! of these
roots,ts,s , the system makes a transition to a second reg
characterized by eitherẇ rf<FB2 ~target sheath saturates! or
ẇ rf>FB1 ~ground sheath saturates!. The second root of Eq
~13!, t t,s , represents the earliest possible time at which
~12! is satisfied and the unsaturated regime may resume
we will see below, however, the unsaturated period gener
resumes much later thant t,s , if at all, due to charge accu
mulation by the blocking capacitor.

In the second, saturated regime the current through
plasma is equal to the ion saturation current for the satur
sheath and is constant in time. This makes it possible
integrate Eq.~6!:

wT~ t !5w rf~ t !2FBst1F j . ~14!

Here F j is the integration constant for thej th saturation
period, wherej 50,1,2,3, . . . indexes the successive satur
tion periods. We adopt the convention that odd and evej
label, respectively, the target and ground sheath saturat
so thats5(21) j . Assuming a sinusoidal driving voltage

w rf5F rfsint,

we may write the target potential as

wT~ t !5F rf~sint2r st !1F j , ~15!

wherer s5FBs /F rf . The above solution, sketched in Fig.
contains all the information needed to assemble comp
solutions of the sheath equation for arbitrary initial con
tions.

We note that a solution similar to Eq.~15! was obtained
previously by Kawamuraet al. @17#. Our solution differs
from theirs in two respects. First, Eq.~15! applies to the case
where the blocking capacitance dominates over the sh
capacitances,CB@Cs . Kawamuraet al., by contrast, con-
sider the opposite ordering. As pointed out earlier, corr
tions to the ion conduction currents must be taken into
06640
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count when the sheath capacitance dominates. Second, i
present work we determine the constantsF j so as to allow
for the possibility that the saturation periods succeed e
other without any intervening period of time during whic
Eq. ~12! holds and neither sheath is saturated. We discuss
determination of theF j , presently.

B. The phase-return map

We determine the constants of integrationF j in Eq. ~14!
from the conditionwT(te, j )50, where te, j represents the
time at which thej th saturation ends. Note that ‘‘zero’’ her
means much smaller than the driving potential. The comp
solution is thus specified by the sequence of end times$te, j%.
We next show how to calculate these end times iterative

We wish to determine the end time for the (j 11)th satu-
ration period knowing that thej th saturation period ended a
time te, j . Three cases arise, depending on whether the
ceding saturation period ends before, during, or after the
riod of time when condition~12! is violated for the electrode
under consideration. We consider each case in turn.

If te, j,ts, j 11, both sheaths remain in the unsaturated
gime until the beginning of the subsequent saturation pe
at tb, j 115ts, j 11. The end of this subsequent saturation p
riod will then occur at the timete, j 11 specified by

w rf~ te, j 11!2w rf~ ts, j 11!2FB, j 11~ te, j 112ts, j 11!50,

te, j,ts, j 11 . ~16a!

If ts, j 11,te, j,t t, j 11, by contrast, condition~12! is violated
at the end of thej th saturation and the subsequent saturat
begins immediately. It will end at the timete, j 11 determined
by

w rf~ te, j 11!2w rf~ te, j !2FB, j 11~ te, j 112te, j !50,

ts, j 11,te, j,t t, j 11 . ~16b!

FIG. 4. Analytic solution of the low-frequency sheath equati
in the saturation regime showing the relation between the ear
saturation start time, the time of maximumwT , and the latest return
time.
7-4
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Finally, if t t, j 11,te, j , the (j 11)th saturation period is
avoided entirely. Equivalently, it may be considered to e
immediately upon the end of thej th saturation period,

te, j 115te, j , t t, j 11,te, j . ~16c!

Equations~15! and~16a!–~16c! constitute the main result o
this section. Together, Eqs.~16a!–~16c! uniquely specify the
end te, j 11 of the (j 11)th saturation period in terms of th
endte, j of the j th saturation period for different values of th
blocking capacitance and asymmetry. This allows the co
plete solution to be constructed for arbitrary initial cond
tions by concatenating successive instances of the satu
solution given in Eq.~15! .

It is convenient to divide the oscillations into half cycle
and to record the return times modulop, so as to measure
their time of occurrence relative to a reference half cycle.
thus define the relative end timete by te, j 115te, j 112 j p. In
terms of the relative times and for a sinusoidal drive, E
~16a!–~16c! take the form

sin~te, j 11!1sin~ts,s!1ur su~te, j 111p2ts, j !50,

te, j,ts,s , ~17a!

sin~te, j 11!1sin~te, j !1ur su~te, j 111p2te, j !50,

ts,s,te, j,t t,s , ~17b!

te, j 111p2te, j50, t t,s,te, j , ~17c!

wheres5(21) j 11. Equations~17a! and~17b! may be visu-
alized as a mapte, j 115f(te, j ) from the reference period
onto itself, as shown in Fig. 5. This map is a special case
Poincare´’s map of first return, and we will refer to it as th
phase-return map. The dashed line in Fig. 5 represents
locus of points such thatte, j5ts,s for s5(21) j 11, or such
that the j th saturation ends precisely at the natural on
point for the (j 11)th saturation given by Eq.~13!. In the

FIG. 5. Phase-return maps for a series of values ofr ~dotted
lines!. The caser 50.369 is shown as a continuous line. The se
mented spiral represents the sequence of end times for a symm
discharge with this value ofr. The dashed line represents the loc
of times such that the preceding (j th! saturation period ends at th
natural onset timets defined by Eq.~13!, i.e., te, j5ts .
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region to the left of this dashed line, successive satura
periods are separated by an unsaturated regime. In this re
the onset of the saturation periods is given by Eq.~13! and is
independent of the end of the previous saturation per
hence the curves forte, j 11 are horizontal.

The phase-return map gives a straightforward way
charting graphically the evolution of the sheath biases. T
procedure is illustrated in Fig. 5 for a symmetric dischar
where FB25FB15FB . Assuming that F rf.FB , the
ground sheath saturates immediately att50 and we may
take te,2150. The first saturation period will then end a
te,0 , given by the intersection of the vertical att50 with the
curve corresponding to the appropriate value ofFB for the
discharge. We refer to this as the first intersection point. T
end time for the first saturation period may then be carr
back to the abscissa by finding the intersection of the h
zontal line going through the first intersection point with t
diagonal line going through the origin. The return time f
the second saturation period is now given by the intersec
of the vertical line going through the second starting tim
with the appropriate phase-return curve. This process ma
repeated indefinitely and is easily automated. For an as
metric discharge, one needs only to alternate between
two curves corresponding to the ground and target shea
The analytic solution constructed by piecing together
successive saturation solutions~15! is shown in Fig. 6. For
FT.50 it is almost indistinguishable from the numerical s
lution of Eq. ~6!.

In the following sections, we will show how the phas
return map can be used to evaluate the steady-state pa
eters, and we will consider the relaxation behavior of puls
discharges.

FIG. 7. Amplitude of the target electrode potentialVT /Vrf and
convergence multiplierf8(t`) for a symmetric discharge as a func
tion of the inverse of the blocking capacitance, parametrized by
ratio r 5FB /F rf

-
tric

FIG. 6. Analytic solutionwT for r 50.369, corresponding to the
solid line in Fig. 5.
7-5
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IV. STEADY-STATE SOLUTIONS AND TRANSIENT
RELAXATION

A. Symmetric electrodes

For symmetric discharges, Fig. 5 shows that steady-s
solutions correspond to the limit points of the phase-ret
map. These limit points are found as the intersection of
phase-return curves with the diagonal representingte, j 11
5te, j . Two cases must be distinguished depending
whether the limit point is in the regime where success
saturation periods are separated by an unsaturated re
~left of the dashed line! or where saturation regimes succe
each other without a pause. This is determined by the va
of the blocking capacitance. The marginal value of the
pacitance separating these two cases is such that the end
follows the singular timets after exactly half a period
te, j 115ts, j . Substituting this in Eq.~17a! yields

sints5rp/2.

For a symmetric discharge with a sinusoidal drive, Eq.~13!
definingts takes the form

FIG. 8. Phase-return maps for an asymmetric discharge wi
large blocking capacitance~regime I!. Note that the sequence of en
times is found by alternating between the phase-return curves
responding to the ground and target sheaths.r 250.188 andr 1

50.369, corresponding toa50.509.

FIG. 9. Phase-return map for an asymmetric discharge wit
moderate value of the blocking capacitance~regime II!. r 2

50.188 andr 150.810, corresponding toa50.232.
06640
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We may eliminatets by summing the squares of the abo
two equations. This yields the marginal value ofr,

r marg5~11p2/4!21/2.0.73. ~18!

Reverting to dimensional variables, we conclude that for

1,
ev rfCB

TeI i
,~11p2/4!1/2, ~19!

the saturation periods will be separated by unsaturated p
ods, as assumed by Kawamuraet al. For smaller values of
CB , the sheaths will never saturate at all, while for lar
values ofCB the saturation periods will succeed each oth
without a pause.

The maximum amplitude of the target potential is reach
at the timet t corresponding to the second root of Eq.~13!.
The value of the amplitude at this time depends on the in
gration constantF` . For r marg,r ,1,

wmax5F rf@sint t2sints2r ~t t2ts!#.

Using Eq.~13! to evaluate thet ’s yields

wmax5F rf@2~12r 2!1/222r cos21r #, r marg,r ,1.

A similar calculation forr ,r marg yields

a

r-

a

FIG. 10. Phase-return map for an asymmetric discharge wi
small value of the blocking capacitance~regime III!. r 250.537 and
r 150.906, corresponding toa50.593.

FIG. 11. Time evolution of the normalized target potentialwT(t)
and currentI T(t) for the parameters of Fig. 8. The continuous lin
represent the numerical solution and the dashed lines represen
analytic solution. The driving potentialVrf550 V, and the plasma
parameters are as in Eq.~8!.
7-6
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wmax

F rf
52F r S p2cos21r 2sin21

rp

2 D
1

rp

2
2~12r 2!1/2G , 0,r ,r marg.

The above results are plotted as a function ofr in Fig. 7.

B. Asymmetric electrodes

In the case of asymmetric discharges, steady-state s
tions correspond to limit cycles of the phase-return m
Geometrically, they appear as squares with two vertices ly
on the diagonalte, j 115te, j ~Fig. 8–109!. Three regimes can
be distinguished depending on the occurrence of unsatur
periods following the target- and ground-saturation perio
These regimes can be identified graphically by the posi
of the off-diagonal vertices of the limit cycle with respect
the locus of singular times represented by the dashed lin
the phase-return maps. The analytic solutions for all th
regimes are compared to the numerical solutions of Eq.~6! in
Figs. 11–13. We used an unusually low source potentia
these figures,Vrf550 V, so as to accentuate the differen
between the analytic and numerical solutions. We next
scribe the three regimes in turn.

In the first regime, when the vertices of the limit cycle l
in the region labeled I and shaded in Fig. 8, one of
sheaths is always saturated. The saturation end times are
determined by applying Eq.~17b! at each sheath:

sin~te,1!1sin~te,2!1r 1~p1te,12te,2!50, ~20a!

FIG. 12. Time evolution of the normalized target potentialwT(t)
and currentI T(t) for the parameters of Fig. 9. The continuous lin
represent the numerical solution and the dashed lines represen
analytic solution. The driving potentialVrf550 V and the plasma
parameters are as in Eq.~8!.

FIG. 13. Time-evolution of the normalized target potent
wT(t) and currentI T(t) for the parameters of Fig. 10. The contin
ous lines represent the numerical solution and the dashed lines
resent the analytic solution. The driving potentialVrf550 V and
the plasma parameters are as in Eq.~8!.
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sin~te,1!1sin~te,2!1r 2~p1te,22te,1!50. ~20b!

Equations~20a! and ~20b! may be solved for the end times
We find that the duration of the ground sheath saturat
period is

te22te15p
12a

11a
. ~21!

Surprisingly, the durations of the saturation periods are in
pendent of the value of the blocking capacitance: this re
is thus identical to that found earlier by Pointu@19,20# and
Song, Field, and Klemperer@26# for the limit CB→`.

The center of the saturation intervals measures the ph
shift between the applied rf signal and the target potentia
is given by the solution of

sinS te11te2

2 D52
par1

11a FcosS p
12a

11aD G21

. ~22!

We see that the phase shift, unlike the duration of the s
ration period, does depend on the value of the blocking
pacitance.

In the second regime, labeled II in Fig. 9, the targ
saturation period is preceded by an unsaturated period
this regime, Eq.~20b! must be replaced by

sin~te,2!1sin~ts,2!1r 2~p1te,22ts,2!50. ~23!

The evolutions ofwT andI T in this regime are shown in Fig
12.

Lastly, in regime III there are unsaturated periods prec
ing both the target- and ground-saturation periods. In t
case the steady-state end times are determined by Eq.~23!
and

sin~te,1!1sin~ts,1!1r 1~p1te,12ts,1!50. ~24!

The evolutions ofwT and I T in regime III are shown in Fig.
13.

C. Relaxation rate

We next consider the convergence properties for non
tionary discharges. In the case of symmetric discharges,
phase-return map specifies that the return time for thej
11)th time is given in terms of that for thej th time by

t j 115f~t j !,

wheref is the phase-return function. The stationary point
thus the solution of

t`5f~t`!.

Linearizing about the stationary point, we see that the d
tance to this point is multiplied at each step byf8(t`):

dt j 115f8~t`!dt j ,

wheredt j5t j2t` . It follows that for small values of the
capacitance, when the saturation period does not extend
the entire half-period (r marg,r ,1),f850 and the steady
state is reached in a single half-period. In the opposite li

the

l
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7-7



s

o
or

n

in
s

te

in

e
th
un

u
th

o-
ld

for

tion
is-
ay

ay

ob-
q.

ely
by
-

ou-
nd
elf

tate
on
the
not
ith

nce
to
. At
ci-

pos-

m
fo

dy-
the
ely

F. L. WAELBROECK PHYSICAL REVIEW E 65 066407
of large capacitance,f8→21 and convergence become
slow. For intermediate values ofr ,0,r ,r marg, the conver-
gence factor is

f8~t`!5r 2A12r 2p2/4. ~25!

The convergence factoruf8(t`)u is shown in Fig. 7.
In asymmetric discharges, the convergence factor is

tained simply by multiplying the convergence factors f
each of the two sheaths.

dt j 115f8~t1!f8~t2!dt j ,

wheret6 are the asymptotic end times for the ground- a
target-saturation periods. In general, as can be seen from
phase-return diagram of Fig. 7, the ground sheath falls
regime wheref8(t1).21. The convergence factor is thu
approximately given byf8(t2).

D. Power dissipation

The power dissipated in the sheaths is easily calcula
from the analytic expressions for the target potential~14! and
current~5!. Integrating the power dissipated from the beg
ning timetb to the end timete of a saturation period, we find

Wsat,657VrfI sat~coste,62costb,6!, ~26!

where Wsat,1 and Wsat,2 are, respectively, the work don
during the ground- and target-saturation periods. During
unsaturated periods, by contrast, the circuit current is fo
by neglecting the target potential in Eq.~6!. The integrated
power is then

Wuns,65vCB

Vrf
2

2
~sin2tb,62sin2te,7!, ~27!

wherete65tb7 in the absence of the corresponding unsat
ated period. Summing the above two expressions for
saturated and~eventual! unsaturated periods with the appr
priate start and end times and dividing by the period yie
the average power

W5
VrfI i 2

2p
@~coste11costb1!/a1coste21costb2

1~sin2tb12sin2te11sin2tb22sin2te2!/r 2#.

~28!

FIG. 14. Variation of the time-averaged power with the para
eter r 2 proportional to the inverse of the blocking capacitance
four values of the asymmetry coefficienta.
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The variation of the power with the blocking capacitance
different values of the asymmetry factora is shown in Fig.
14. In general, the beginning and end times of the satura
periods must be obtained numerically. For symmetric d
charges without saturation periods, however, the power m
be given in the closed analytic form

W5
2VrfI i 2

p
A12

p2r 2

4
. ~29!

In the limit of large blocking capacitance, the power m
also be written in the closed analytic form

W5VrfI i 2

11a

ap
sinS ap

11aD . ~30!

The above results are in excellent agreement with those
tained by direct integration of the numerical solutions of E
~6!.

E. Period doubling

Period doubling has been demonstrated in capacitiv
coupled sheaths driven by a resonantly tuned circuit
Miller et al. @37#. For the simple capacitive coupling consid
ered here, however, we find no occurrence of period d
bling. This is easily seen by examining the map of seco
return obtained by applying the phase-return map to its
~Fig. 15!. The second-return map has only one steady-s
solution, corresponding to its single point of intersecti
with the diagonal. This steady state is identical to that for
single-period map. This shows that period doubling does
occur in the absence of resonant tuning, in agreement w
the results of Milleret al. @37#.

F. Optimal blocking capacitance

For electron-ion sheaths, the optimal blocking capacita
is determined by maximizing the coupling of the source
the target sheath while avoiding ground sheath saturation
first sight this is accomplished by taking the largest capa
tance such that the saturation of the ground sheath is im
sible ~even transiently!,

-
r

FIG. 15. Map of first~dotted line! and second~continuous line!
returns forr 50.12. The fact that both maps have the same stea
state solution, represented by their point of intersection with
diagonal, shows that there is no period 2 orbit for capacitiv
coupled sheaths.
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CB<
I i 1

vVrf
. ~31!

If transient ground sheath saturation is acceptable, h
ever, the self-bias potential may allow a larger capacitanc
be used while avoiding ground sheath saturation in
steady state. This larger capacitance improves the rf coup
to the target sheath. The reason ground saturation is avo
in steady state is that the saturation period for the ta
sheath lasts so long that it overshoots the range of ti
when ground sheath saturation could occur. The optim
value of r 1 , when transient ground saturation is tolerate
follows by equating the steady-state end time for the targ
saturation periodte2 to the upper limitt t of the range of time
during which ẇ rf(t).FB1 . In the absence of a ground
saturation period, the end of the target sheath saturatio
te25f(ts2). The optimal capacitance is thus determined

t t15f~ts2!,

wheret t1 and ts2 are determined by Eq.~13!. The corre-
sponding optimal value ofr 1 is plotted as a function of the
aspect ratio in Fig. 16. Note that the steady-state optim
for r 1 differs from unity only for sufficiently small values o
a. Specifically,r 1opt reaches unity for tants21p5ts2 , or
ts2521.352. Evaluating the correspondinga yields amarg
5r 25costs250.217. For larger values ofa,a.amarg, the
optimum capacitance is given by Eq.~31!.

V. NEGATIVE-ION EXTRACTION

A persistent problem when using rf-driven sheaths
etching is that comparatively few electrons reach the bot
of large aspect-ratio trenches due to the isotropy of the e
tron flux as opposed to the anisotropy of the ion flux@38–
41#. This results in differential charging of the surface of t
substrate with respect to the bottom of the trenches.
consequent ohmic heating and the perturbation of the
trajectories caused by the field are a significant source
fabrication damage.

An approach to solving the charging problem is to for
the inversion of the sheath potential so as to attract nega
ions into the trenches. Numerical simulations@11# and recent
experiments@9,10,12,13# have demonstrated that negativ
ion extraction is achievable in the afterglow of pulsed d
charges. During the power-off phase, negative ions
formed by dissociative attachment, thereby produc

FIG. 16. Optimum value ofr 1 as a function of the aspect rati
a.
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strongly electronegative discharges that approach, in s
cases, pure ion-ion plasmas@2,6,7,42,43#. Equal doses of
negative and positive ions can then be extracted by apply
an rf bias to the substrate during the afterglow phase.
course, the rf frequency must be smaller than the ion plas
and transit frequencies to allow the ions to respond to th
field.

In order to extend the analysis presented in Secs. II and
to electronegative plasmas, one needs only to know
current-voltage characteristics for such plasmas. In princi
determination of the current-voltage characteristics requ
the use of kinetic theory, since the negative and positive i
have comparable temperatures. Fortunately, we have se
the preceding section that for strong bias, the dynamics
the sheath is dominated by periods in which one of
sheaths is saturated. The ion currents, in particular, are
sentially always either saturated or cut off due to the h
values of the bias compared to the ion temperature. T
makes it possible to draw some useful conclusions from
simple fluid model.

We thus extend the model of Sec. II to negative ions
using the following fluid-theory-based expression for t
current characteristics:

I s5H AsFnpeuBp2
1

4
neev̄eexp~ws!G , w!21/g

2AsF1

4
neev̄e1nneuBnG , 1/g!w,

~32!

where uBp and uBn are the Bohm saturation currents fo
positive- and negative-ion extraction, respectively,a
5np /ne is the electronegativity,g5Te /Ti is the temperature
ratio ~we assume hereTp5Tn5Ti), and v̄e5A8Te /pms is
the electron thermal velocity. The Bohm fluxes in electron
gative plasmas@28,31# are

uBs
2 5

GkTs

ms
1

kTe

ms

11a

11ag
.~11G!

kTs

ms
~33!

whereG is the adiabatic expansion constant and where
approximate form on the right holds fora@1. The above
current-voltage characteristics are shown in Fig. 17.

We next obtain the condition for sheath inversion. Fro
Fig. 17, we see that sheath inversion occurs when the n
tive saturation current at the target electrode is of a les

FIG. 17. Current-voltage characteristics in a negative-ion do
nated plasma with electronegativitya5100 and mass ratio
mn /mp52 ~appropriate for Cl1-Cl2

2).
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magnitude than the ion saturation current at the ground e
trode,

A2~nn2uBn21ne2v̄e/4!,A1np1uBp1 , ~34!

where we have included sheath indices to allow for the p
sibility that the density and temperatures are different at
two electrodes. For strong electronegativity (np.nn), the
above criterion simplifies to

a.

aA mpTe

2pmeTi

12aAmp

mn

. ~35!

We see that inversion is helped by low electron tempera
and by high reactor asymmetry. Note that formp5mn ,a
,1 is necessary for sheath inversion. Experimental obse
tions have shown that the electron temperature falls rap
in the afterglow phase, facilitating sheath inversion. In ind
tively coupled chlorine discharges, for example, Ahnet al.
@42# have shown that at the beginning of the power-
phase, the electron temperature drops at time of the orde
10 ms, while the electron density drops somewhat m
slowly, at time of the order of 25ms. The density of Cl2

ions rises concomitantly with the fall of the electron dens
due to dissociative attachment.

The results of Sec. III remain applicable when the she
inversion criterion~35! is satisfied, provided that the prope
values of the saturation currents are used. Specifically,
ground sheath ion saturation current must be replaced by
target sheath negative saturation current, and the ‘‘grou
saturation’’ period must now be reinterpreted as a tar
sheath inversion period. We may then use these result
discuss the role of the blocking capacitance.

When the sheath inversion criterion is only margina
satisfied, large values of the capacitance favor negative
extraction by drawing more negative current out of the tar
electrode@11#. When the sheath inversion criterion is we
satisfied, by contrast, the choice of the blocking capacita
is governed by the need to maintain good response t
while ensuring that both positive and negative saturations
achieved. The response time is of concern, since the a
glow period typically lasts for only a few rf periods, an
failure to relax to the steady-state condition would result
differential charging, precisely the condition that negativ
ion extraction seeks to remedy. Examination of the result
Sec. III shows that relaxation is achieved in a single cycl
the saturation periods are separated by an~however brief!
unsaturated period. We conclude that the optimum cap
tance in this case is such as to place the system at the bo
ary between regimes I and II~Fig. 9!.

VI. SUMMARY

We have investigated the dynamics of a two-sheath s
tem driven capacitively by an rf source. We based our an
sis on the observation that the sheath displacement cur
are small in the limit of low frequency and can be neglec
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in the presence of a large blocking capacitance,CB@Cs .
The system can then be described by a single first-order
ferential equation, Eq.~6!.

We have solved analytically Eq.~6! governing sheath dy-
namics in the limit eVrf /kTe@1. Our solution may be
viewed as a generalization of the analytic solutions of Poi
@19,20# (CB→`) to finite values of the blocking capac
tances satisfyingCB@Cs and to nonstationary conditions
We have shown that the properties of the dynamics are m
easily understood in terms of the phase-return map desc
ing the times at which successive saturation periods e
This map is a special case of Poincare´’s map of first return,
and provides a convenient way of predicting the properties
the solutions and the role of factors such as the block
capacitor and asymmetry.

The blocking capacitance has two effects on the she
circuit dynamics. First, it determines the duration of t
sheath saturation periods. Second, it determines the ra
relaxation to steady state in pulsed discharges. The ma
tude of these effects is most conveniently measured by c
paring the blocking capacitance to a characteristic cap
tance for the system defined as the capacitance that wou
charged up to the driving voltageVrf by the negative satura
tion current to the target electrode,I sat, in a time equal to
1/2p of the source period,

Cchar5
I sat

vVrf
. ~36!

For electron-ion sheathsI sat is equal and opposite to th
positive-ion saturation current for thegroundsheath. For ion-
ion sheaths, by contrast, it is given by the negative-ion sa
ration current for thetarget sheath.

In asymmetric discharges, the most salient effect of rel
ation is the buildup of a self-bias potential ensuring cons
vation of current across the discharge. In symmetric d
charges, by contrast, there is no self-bias, so that
relaxation is observed more subtly as a phase adjustmen

For electron-ion sheaths, the optimum capacitance is
termined by maximizing the rf coupling to the sheath wh
avoiding ground sheath saturation. Ground sheath satura
is undesirable, as the attendant wall bombardment by e
getic ions results in impurity release and wall damage. Fo
asymmetry factora.0.217, the optimum capacitance
equal to the characteristic capacitance defined in Eq.~36!
above. Fora,0.217, by contrast, the ratio of the characte
istic capacitance to the optimal capacitance becomes
than unity, as shown in Fig. 16.

For negative-ion dominated sheaths, ground satura
must be avoided by adopting a reactor asymmetry such
a,Amn /mp @cf. Eq. ~35!# @13#. The optimum blocking ca-
pacitance is then determined by balancing the requirem
of good sheath coupling and rapid relaxation so as to av
substrate charging.
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